Efficient Training of RBF Networks Via the BYY Automated Model Selection Learning Algorithms
نویسندگان
چکیده
Radial basis function (RBF) networks of Gaussian activation functions have been widely used in many applications due to its simplicity, robustness, good approximation and generalization ability, etc.. However, the training of such a RBF network is still a rather difficult task in the general case and the main crucial problem is how to select the number and locations of the hidden units appropriately. In this paper, we utilize a new kind of Bayesian Ying-Yang (BYY) automated model selection (AMS) learning algorithm to select the appropriate number and initial locations of the hidden units or Gaussians automatically for an input data set. It is demonstrated well by the experiments that this BYY-AMS training method is quite efficient and considerably outperforms the typical existing training methods on the training of RBF networks for both clustering analysis and nonlinear time series prediction.
منابع مشابه
BYY harmony learning, independent state space, and generalized APT financial analyses
First, the relationship between factor analysis (FA) and the well-known arbitrage pricing theory (APT) for financial market is discussed comparatively, with a number of to-be-improved problems listed. An overview is made from a unified perspective on the related studies in the literatures of statistics, control theory, signal processing, and neural networks. Next, we introduce the fundamentals ...
متن کاملBYY harmony learning, structural RPCL, and topological self-organizing on mixture models
The Bayesian Ying-Yang (BYY) harmony learning acts as a general statistical learning framework, featured by not only new regularization techniques for parameter learning but also a new mechanism that implements model selection either automatically during parameter learning or via a new class of model selection criteria used after parameter learning. In this paper, further advances on BYY harmon...
متن کاملA fast fixed-point BYY harmony learning algorithm on Gaussian mixture with automated model selection
The Bayesian Ying–Yang (BYY) harmony learning theory has brought about a new mechanism that model selection on Gaussian mixture can be made automatically during parameter learning via maximization of a harmony function on finite mixture defined through a specific bidirectional architecture (BI-architecture) of the BYY learning system. In this paper, we propose a fast fixed-point learning algori...
متن کاملBYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
The BYY learning has been extended to a modular system, with developments on not only regularized implementation via either normalization or data smoothing, but also the least complexity based model selection. Moreover, both unsupervised and supervised learning have been speci2cally investigated on networks with one hidden layer of binary units. Adaptive EM-like learning algorithms are provided...
متن کاملLearning Algorithms for RBF Functions and Subspace Based Functions
Among extensive studies on radial basis function (RBF), one stream consists of those on normalized RBF (NRBF) and extensions. Within a probability theoretic framework, NRBF networks relates to nonparametric studies for decades in the statistics literature, and then proceeds in the machine learning studies with further advances not only to mixture-of-experts and alternatives but also to subspace...
متن کامل